A short description of the post.
Download \(CO_2\) emissions per capita from Our World in Data
Assign the location of the file to file_csv
. The data should be in the same directory as this file.
Read the data into R and assign it to emissions
.
emissions
emissions
# A tibble: 23,307 × 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# … with 23,297 more rows
emissions
data THENclean_names
from the janitor package to make the names easier to work withtidy_emissions
tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 × 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# … with 23,297 more rows
tidy_emissions
THENfilter
to extract rows with year == 1984
THENskimr
to calculate the descriptive statisticsName | Piped data |
Number of rows | 217 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 217 | 0 |
code | 12 | 0.94 | 3 | 8 | 0 | 205 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1984.00 | 0.00 | 1984.00 | 1984.00 | 1984.0 | 1984.00 | 1984.0 | ▁▁▇▁▁ |
annual_co2_emissions_per_capita | 0 | 1 | 5.61 | 9.67 | 0.04 | 0.51 | 2.5 | 7.58 | 78.6 | ▇▁▁▁▁ |
tidy_emissions
then extract rows with year == 1984
and are missing a code# A tibble: 12 × 4
entity code year annual_co2_emissions_per_ca…
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1984 1.23
2 Asia <NA> 1984 1.74
3 Asia (excl. China & India) <NA> 1984 2.68
4 EU-27 <NA> 1984 9.11
5 EU-28 <NA> 1984 9.14
6 Europe <NA> 1984 10.6
7 Europe (excl. EU-27) <NA> 1984 12.6
8 Europe (excl. EU-28) <NA> 1984 13.3
9 North America <NA> 1984 13.9
10 North America (excl. USA) <NA> 1984 5.21
11 Oceania <NA> 1984 10.7
12 South America <NA> 1984 1.87
Entities that are not countries do not have country codes.
filter
to extract rows with your == 1984 and without missing codes THENselect
to drop the year
variable THENrename
to change the variable entity
to country
emissions_1984
annual_capita_co2_emissions
?emissions_1984
slice_max
to extract the 15 rows with the annual_capita_co2_emissions
max_15_emitters
annual_capita_co2_emissions
?emissions_1984
THENslice_min
to extract the 15 rows with the lowest valuesmin_15_emitters
bind_rows
to bind together the max_15_emitters
and min_15_emitters
max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15
to 3 file formatsmax_min_15_csv <- read_csv("max_min_15.csv")
max_min_15_tsv <- read_tsv("max_min_15.tsv")
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|")
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv)
# A tibble: 0 × 3
# … with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
Are there any differences?
country
in max_min_15
for plotting and assign to max_min_15_plot_dataemissions_1984
THENmutate
to reorder country
according to per_capital_co2_emissions
max_min_15_plot_data
preview: preview.png