Code for Quiz 6 - more dplyr and our first interactive chart.
drug_cos.csv
, health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
, respectively.glimpse
to get a glimpse of the data.
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
# A tibble: 13 × 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer…
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer…
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer…
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer…
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer…
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer…
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer…
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer…
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer…
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer…
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer…
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer…
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer…
Start with drug_cos
Extract observations for the ticker JNJ from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset
drug_cos_subset
# A tibble: 8 × 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 1 more variable: year <dbl>
Use left_join
to combine the rows and columns of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df
combo_df
# A tibble: 8 × 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker
, name
, location
, and industry
are the same for all the observations.co_name
co_location
co_industry
groupPut the r inline commands used in the blanks below. When you knit the document the results of the comands will be displayed in your test. The company JNJ located in New Jersey and is a member of the ??? group.
Start with combo_df
Select variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, and netincome
Assign the output to combo_df_subset
combo_df_subset
combo_df_subset
# A tibble: 8 × 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
Create the variable grossmargin_check
to compare with the variable grossmargin
. They should be equal.
grossmargin_checK = gp / revenue
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos data
For each industry calculate:
mean_netmargin_percent = mean(netincome / revenue) * 100
median_netmargin_percent = median(netincome / revenue) * 100
min_netmargin_percent = min(netincome / revenue) * 100
max_netmargin_percent = max(netincome / revenue) * 100
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 × 5
industry mean_netmargin_… median_netmargi… min_netmargin_p…
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics & Re… 13.1 12.3 0.399
3 Drug Manufacture… 19.4 19.5 -34.9
4 Drug Manufacture… 5.88 9.01 -76.0
5 Healthcare Plans 3.28 3.37 -0.305
6 Medical Care Fac… 6.10 6.46 1.40
7 Medical Devices 12.4 14.3 -56.1
8 Medical Distribu… 1.70 1.03 -0.102
9 Medical Instrume… 12.3 14.0 -47.1
# … with 1 more variable: max_netmargin_percent <dbl>
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker ILMN from health_cos
and assign to the variable health_cos_subset
health_cos_subset
health_cos_subset
# A tibble: 8 × 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illumina … 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illumina … 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illumina … 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illumina … 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illumina … 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illumina … 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illumina … 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illumina … 3.33e9 2.3 e9 6.23e8 826000000 6.96e9 3114000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
?distinct
. Go to the help pane to see what distinct
does.?pull
. Go to the help pane to see what pull
does.The name of the company with ticker ILMN is Illumina Inc.
In following chuck:
Assign the company’s industry group to the variable co_industry
#Steps 7-11:
start withhealth_cos` THEN
group_by
industry THEN
calculate the median research and development expenditure as a percent of revenue by industry
assign the output to df
glimpse
to glimpse the data for the plots.Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
ggplot
to initialize the chartdf
industry
is mapped to the x-axis
med_rnd_rev
med_rnd_rev
is mapped to the y-axisgeom_col
scale_y_continuous
to label the y-axis with percentcoord_flip()
to flip the coordinateslabs
to add title, subtitale, and remove x and y-axestheme_classic()
from the hrbrthemes packages to improve themeggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_classic()
echarts4r
df
arrange
to reorder med_rnd_rev
e_charts
to initialize a chart
industry
is mapped to the x-axise_flip_coords()
to flip the coordinatese_title
to add the title and the subtitlee_legend
to remove the legendse_x_axis
to change format of labels on x-axis to percente_y_axis
to remove labels on y-axis-e_theme
to change the themedf %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE) %>%
e_theme("infographic")