Exploratory Analysis

Data Visualization for Quiz 7, part 1.

  1. Load the R package we will use:
  1. Quiz questions

Question: Modify Slide 34

ggplot(faithful) + 
   geom_point(aes(x = eruptions, y = waiting, 
                  colour = waiting > 64))  

Question: Modify Slide 35 (Intro)

ggplot(faithful) + 
   geom_point(aes(x = eruptions, y = waiting),
              colour = "darkorange")

Question: Modify Slide 36 (Intro)

ggplot(faithful) + 
   geom_histogram(aes(x = waiting))

Question: Modify geom-ex-1

ggplot(faithful) + 
   geom_point(aes(x = eruptions, y = waiting), 
   shape = "diamond", size = 5, alpha =0.9)

Question: Modify geom-ex-2

ggplot(faithful) + 
   geom_histogram(aes(x = eruptions, fill = eruptions > 3.2))

Question: Modify stat-slide-40

ggplot(mpg) + 
   geom_bar(aes(x = manufacturer))

Question: Modify stat-slide-41

-change code to count and to plot the variable manufacturer instead of class

mpg_counted <- mpg %>% 
  count(manufacturer, name = 'count')
ggplot(mpg_counted) + 
  geom_bar(aes(x = manufacturer, y = count), stat = 'identity')

Question: Modify stat-slide-43

ggplot(mpg) + 
  geom_bar(aes(x = manufacturer, y = after_stat(100 * count / sum(count))))

Question: Modify answer to stat-ex-2

ggplot(mpg) + 
  geom_jitter(aes(x = class, y = hwy), width = 0.2) +
  stat_summary(aes(x = class, y = hwy), geom = "point", 
  fun = "median", color = "purple", 
  shape = "square", size = 9)

Save ggplot to project folder.

ggsave(filename = "preview.png", path = here::here("_posts", "2022-03-08-eploratory-analysis"))